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Exercise 3.1 Counting Operations in Loops (2 Points).

For the following code fragments count how many times the function f is called. Report the number of
calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)
and prove your result. For example, in the code fragment

Algorithm 1
for k = 1, . . . , 100 do

f()

the function f is called
∑100

k=1 1 = 100 times, so the amount of calls is in O(1).

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = j, . . . , n do
f()

b) Consider the snippet:

Algorithm 3
for j = 1, . . . , n do

for k = j, . . . , n do
for l = 1, . . . , 100 do

f()
f()



c) Consider the snippet:

Algorithm 4
for k = 1, . . . , 100 do

f()

for j = 1, . . . , n do
f()
for k = 1, . . . , j do

for l = 1, . . . , j do
for m = 1, . . . , j do

f()

d) Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

for k = 1, . . . , j do
l← 1
while l ≤ j do

f()
l← 2l

∗e) Consider the snippet:

Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
f()

Exercise 3.2 Divide and Conquer (1 Point).

a) List at least two algorithms from your solutions or the sample solutions of sheet 1 and sheet 2 that
are divide-and-conquer algorithms.

b) Consider the following problem:

You are given a 2k × 2k chessboard with one missing square and as many L-shaped puzzle pieces
as you want. Each puzzle-piece can cover exactly three squares of the chessboard. As you will show
algorithmically in this exercise, it is always possible to cover such chessboards by L-shaped puzzle
pieces. An example is given in Figure 1 for k = 2, where the missing piece is a corner piece.
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(a) 4× 4 chessboard (b) covering

Figure 1: Example of a chessboard and its covering by L-shaped puzzle pieces.

1) Devise a divide-and-conquer algorithm that can cover a 2k × 2k chessboard with one missing
square at an arbitrary position for k ∈ {1, 2, 3, . . . }. Describe your algorithm using words. Ma-
ke sure to describe how you divide the problem into subproblems and how you handle the base
case(s). Your description should be concise (e.g., it could have a pseudo-code-like form for reada-
bility).

You can assume that each square is represented by its coordinates, speci�cally, the square in the
lower le� corner has coordinates (1, 1) and the square in the upper right corner has coordinates
(2k, 2k). �e input of your algorithm is (k, a, b), where a and b are coordinates of the missing
square.

2) Determine the running time of your algorithm in terms of n = 2k in O-notation.

Exercise 3.3∗ Maximum-Submatrix-Sum.

Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n outputs its maximal submatrix sum
S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?
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