
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 07. October 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 3 HS 19

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 14th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 3.1 Counting Operations in Loops (2 Points).

For the following code fragments count how many times the function f is called. Report the number of
calls as nested sum, and then simplify your expression inO-notation (as tight and simpli�ed as possible)
and prove your result. For example, in the code fragment

Algorithm 1
for k = 1, . . . , 100 do

f()

the function f is called
∑100

k=1 1 = 100 times, so the amount of calls is in O(1).

a) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for k = j, . . . , n do
f()

b) Consider the snippet:

Algorithm 3
for j = 1, . . . , n do

for k = j, . . . , n do
for l = 1, . . . , 100 do

f()
f()



c) Consider the snippet:

Algorithm 4
for k = 1, . . . , 100 do

f()

for j = 1, . . . , n do
f()
for k = 1, . . . , j do

for l = 1, . . . , j do
for m = 1, . . . , j do

f()

d) Consider the snippet:

Algorithm 5
for j = 1, . . . , n do

for k = 1, . . . , j do
l← 1
while l ≤ j do

f()
l← 2l

∗e) Consider the snippet:

Algorithm 6
for j = 1, . . . , n do

for k = 1, . . . , j do
for ` = 1, . . . , k do

for m = `, . . . , n do
f()

Exercise 3.2 Divide and Conquer (1 Point).

a) List at least two algorithms from your solutions or the sample solutions of sheet 1 and sheet 2 that
are divide-and-conquer algorithms.

b) Consider the following problem:

You are given a 2k × 2k chessboard with one missing square and as many L-shaped puzzle pieces
as you want. Each puzzle-piece can cover exactly three squares of the chessboard. As you will show
algorithmically in this exercise, it is always possible to cover such chessboards by L-shaped puzzle
pieces. An example is given in Figure 1 for k = 2, where the missing piece is a corner piece.

2



(a) 4× 4 chessboard (b) covering

Figure 1: Example of a chessboard and its covering by L-shaped puzzle pieces.

1) Devise a divide-and-conquer algorithm that can cover a 2k × 2k chessboard with one missing
square at an arbitrary position for k ∈ {1, 2, 3, . . . }. Describe your algorithm using words. Ma-
ke sure to describe how you divide the problem into subproblems and how you handle the base
case(s). Your description should be concise (e.g., it could have a pseudo-code-like form for reada-
bility).

You can assume that each square is represented by its coordinates, speci�cally, the square in the
lower le� corner has coordinates (1, 1) and the square in the upper right corner has coordinates
(2k, 2k). �e input of your algorithm is (k, a, b), where a and b are coordinates of the missing
square.

2) Determine the running time of your algorithm in terms of n = 2k in O-notation.

Exercise 3.3∗ Maximum-Submatrix-Sum.

Provide anO(n3) time algorithm which given a matrixM ∈ Zn×n outputs its maximal submatrix sum
S. �at is, if M has some non-negative entries,

S = max
1≤a≤b≤n
1≤c≤d≤n

b∑
i=a

d∑
j=c

Mij ,

and if all entries ofM are negative, S = 0.

Justify your answer, i.e. prove that the asymptotic runtime of your algorithm is O(n3).

Hint: You may want to start by considering the cumulative column sums

Cij =

i∑
k=1

Mkj .

How can you compute all Cij e�ciently? A�er you have computed Cij , how you can use this to �nd S?

3


